
Mining the biomedical literature for protein functions and interactions

Miguel Andrade

Computational Biology & Data Mining group
Max Delbrück Center for Molecular Medicine
miguel.andrade@mdc-berlin.de

MedlineRanker

Jean-Fred
Fontaine

Discriminative words

rank	word	weight
1	aggregation	7.00
2	synuclein	6.21
3	misfolding	5.72
4	abeta	5.43
5	lewy	5.32
6	tangle	5.14
7	alzheimer	5.09
8	neurodegeneration	4.89
9	amyloid	4.87
10	tau	4.86
11	app	4.74
12	aggregate	4.67
13	huntington	4.56
14	prion	4.44
15	fibril	4.43
16	oligomer	4.34
17	hallmark	4.27

Medline Ranker

Abstracts selection

The query topic (the training set) is:

- the following PubMed query
- all the following MeSH terms
- the following list of PMIDs

protein aggregation brain

one per line

The reference (the background set) is defined by:

- the whole Medline database
- the following list of PMIDs

one per line

The abstracts to be ranked (the test set) are defined by:

- the training set
- the background set
- 10 000 randomly chosen recent abstracts
- publications of the last month(s)
- the -year(s) old abstracts
- the following list of PMIDs

one per line

Rank it

Reset

MedlineRanker

Jean-Fred
Fontaine

Discrim

rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

neur

prion

fibril

oligomer

hallmark

Rank	PMID	Abstract Title	P-value
1	22970285	Disturbed ca(2+) homeostasis increases glutaminyl cyclase expression ; connecting two early pathogenic events in Alzheimer 's disease in vitro.	9.78125e-05
HIGHLIGHTER		CONTACT	CBDM GROUP
Disturbed ca(2+) homeostasis increases glutaminyl cyclase expression ; connecting two early pathogenic events in Alzheimer 's disease in vitro.			
<p>A major neuropathological hallmark of Alzheimer 's disease (AD) is the deposition of aggregated β amyloid (Aβ) peptide in the senile plaques . Aβ is a peptide of 38-43 amino acids and its accumulation and aggregation plays a key role early in the disease . A large fraction of β amyloid is N-terminally truncated rendering a glutamine that can subsequently be cyclized into pyroglutamate (pE). This makes the peptide more resistant to proteases, more prone to aggregation and increases its neurotoxicity . The enzyme glutaminyl cyclase (QC) catalyzes this conversion of glutamine to pE. In brains of AD patients, the expression of QC is increased in the earliest stages of pathology , which may be an important event in the pathogenesis . In this study we aimed to investigate the regulatory mechanism underlying the upregulation of QC expression in AD . Using differentiated SK-N-SH as a neuronal cell model , we found that neither the presence of Aβ peptides nor the unfolded protein response, two early events in AD , leads to increased QC levels . In contrast, we demonstrated increased QC mRNA levels and enzyme activity in response to another pathogenic factor in AD , perturbed intracellular Ca(2+) homeostasis. The QC promoter contains a putative binding site for the Ca(2+) dependent transcription factors c-fos and c-jun. C-fos and c-jun are induced by the same Ca(2+)-related stimuli as QC and their upregulation precedes QC expression . We show that in the human brain QC is predominantly expressed by neurons . Interestingly, the Ca(2+)- dependent regulation of both c-fos and QC is not observed in non-neuronal cells . Our results indicate that perturbed Ca(2+) homeostasis results in upregulation of QC selectively in neuronal cells via Ca(2+)- dependent transcription factors. This suggests that disruption of Ca(2+) homeostasis may contribute to the formation of the neurotoxic pE Aβ peptides in Alzheimer 's disease .</p>			

Génie

The screenshot shows the Génie web interface. On the left, a table titled "Discriminative words" lists 16 words with their ranks and weights. On the right, a search form allows users to specify a topic of interest (e.g., "protein influenza lung") and select genes to be ranked (e.g., "Human").

rank	word	weight
1	influenza	9.32
2	iav	7.79
3	host	6.45
4	viru	6.15
5	hemagglutinin	5.44
6	pandemic	5.18
7	lung	5.15
8	pathogenicity	4.32
9	ha	4.19
10	neuraminidase	4.18
11	infection	3.97
12	virulence	3.94
13	defense	3.92
14	infectivity	3.82
15	chemokine	3.79
16	replication	3.71

rs

ur topic of interest:

cles matching the following PubMed query
articles associated with the following MeSH terms (tree top)
y the following PMIDs

protein influenza lung

ct the genes to be ranked:

all genes from this species (a taxonomic ID or scientific name)
 only the following NCBI Entrez Gene IDs

9606 Human

ne per line

ype of gene: protein-coding

-value cutoff for abstracts selection:

user-defined 0.01

alse discovery rate cutoff for genes selection: 0.01

! Reset

Ranks a set of genes from a whole genome according to a topic

Fontaine et al.
(2011) *Nucleic Acids Research*

Génie

Rank	GeneID	Symbol	Homologs	PMIDs	Hits	FDR	Top 10 abstracts	
Discovery	1 3458	IFNG					<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> HIGHLIGHTER Interferon -gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells . </div> <div style="flex: 1;"> CONTACT </div> <div style="flex: 1;"> CBDM GROUP </div> </div>	
	2 7124	TNF						
	3 3576	IL8						
	4 3586	IL10						
	5 7097	TLR2						
	6 7099	TLR4						

PESCADOR

PESCADOR
Platform for Exploration of Significant Concepts Associated to co-Occurrences Relationships.

[Input](#) | [Concepts](#) | [Retrieval](#) | [Development](#) | [Help](#)

MDC
Berlin-Buch

INPUT [Required]

Paste below your list of PubMed IDs (**one per line!**):

```
17151287
18561034
17259179
12147333
15916898
18585350
15710903
19422822
```

Example: [Alzheimer and Parkinson diseases](#) i

Other examples of PMID lists related to:

[Phosphorylation in Yeast](#)

[Host-Pathogen Interactions in *Arabidopsis thaliana*](#)

[Cell Cycle in *Escherichia coli*](#)

[Clear](#)

Target Species

Inform below the [NCBI's Taxonomy](#) ID for the target species:

9606

Examples: 9606 (*H. sapiens*), 3702 (*A. thaliana*)

PLUS

Customized concepts

Load below the biological concepts to be checked for (**one per line!**)

```
ALZHEIMER
AD
PARKINSON
PD
AGGREGATION
AMYLOID
CLEAVAGE
```

[Example](#) [Clear](#)

[Start analysis](#)

Extract
interactions
and filter by
concepts

Barbosa-Silva
et al. (2010)
BMC
Bioinformatics

Barbosa-Silva
et al. (2011)
BMC
Bioinformatics

<http://cbdm.mdc-berlin.de/tools/pescador/>

PESCADOR

PESCADOR

Platform: Target Organism: *Homo sapiens* (TAXID: [9606](#))

Click on a co-occurrence type to filter the type of co-occurrences displayed.

Selected PubMed ID: [10764738](#)

Sentence 1: Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments.

Sentence 2: Lewy bodies, neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies, comprise alpha-synuclein filaments and other less defined proteins.

Sentence 3: Characterization of Lewy body proteins that interact with alpha-synuclein may provide insight into the mechanism of Lewy body formation.

Sentence 4: Double immunofluorescence labeling and confocal microscopy revealed approximately 80% of cortical Lewy bodies contained microtubule-associated protein 1B (MAP-1B) that overlapped with alpha-synuclein.

Sentence 5: Lewy bodies were isolated using an immunomagnetic technique from brain tissue of patients dying with dementia with Lewy bodies.

Sentence 6: Lewy body proteins were resolved by polyacrylamide gel electrophoresis.

Sentence 7: Immunoblotting confirmed the presence of MAP-1B and alpha-synuclein in purified Lewy bodies.

Sentence 8: Direct binding studies revealed a high affinity interaction (IC₅₀ approximately 20 nm) between MAP-1B and alpha-synuclein.

Sentence 9: The MAP-1B-binding sites were mapped to the last 45 amino acids of the alpha-synuclein C terminus.

Sentence 10: MAP-1B also bound in vitro assembled alpha-synuclein fibrils.

Sentence 11: Thus, MAP-1B may be involved in the pathogenesis of Lewy bodies via its interaction with monomeric and fibrillar alpha-synuclein.

PESCADOR

Type 1

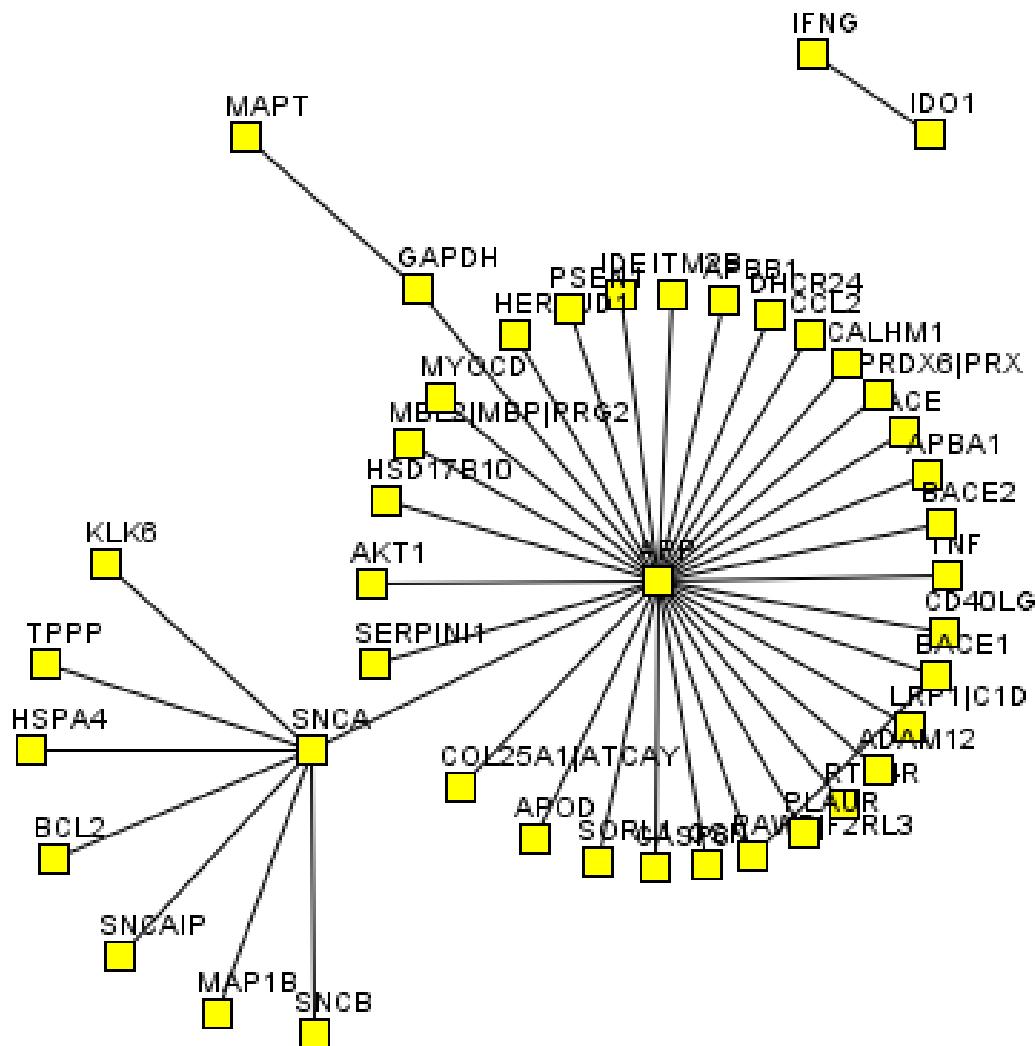
MAP-1B also bound in vitro assembled alpha-synuclein fibrils.

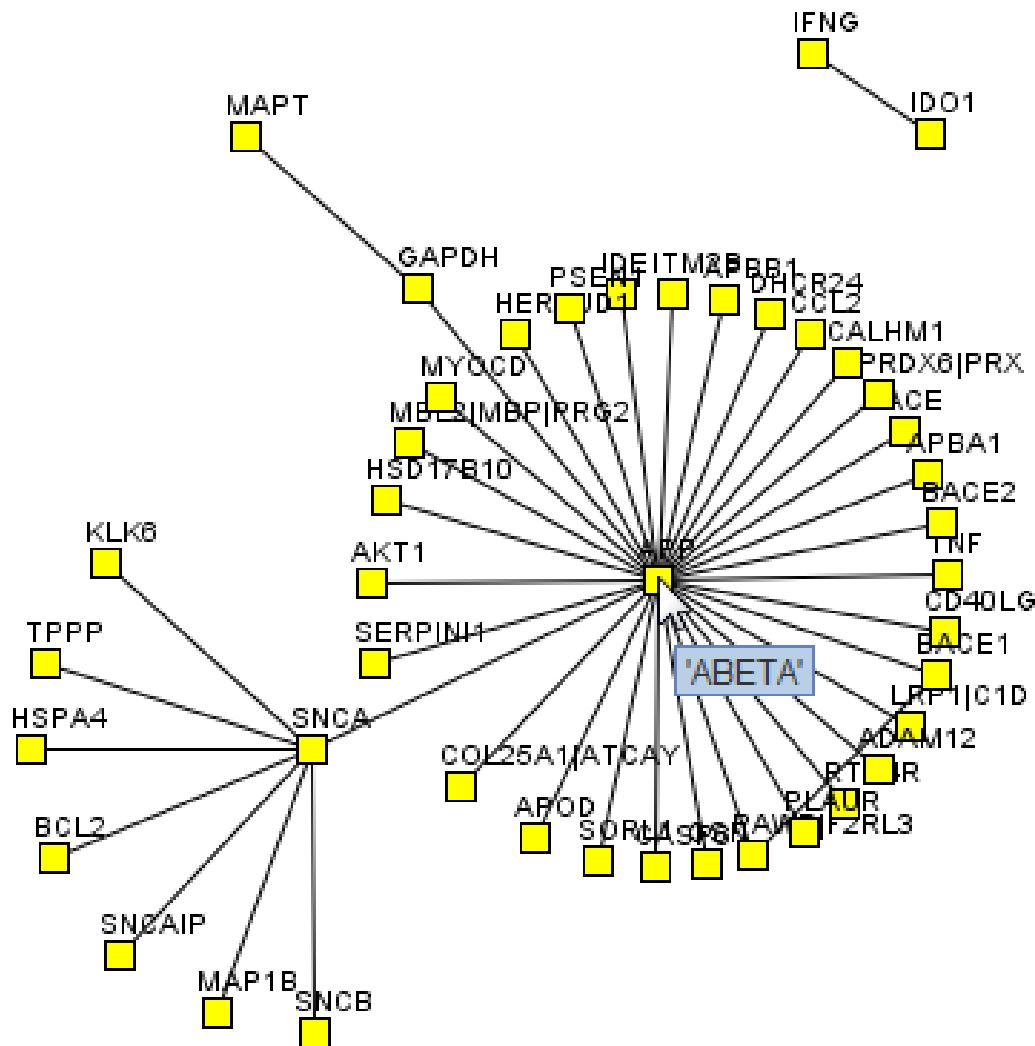
Term + [Biointeraction] + Term

Type 2

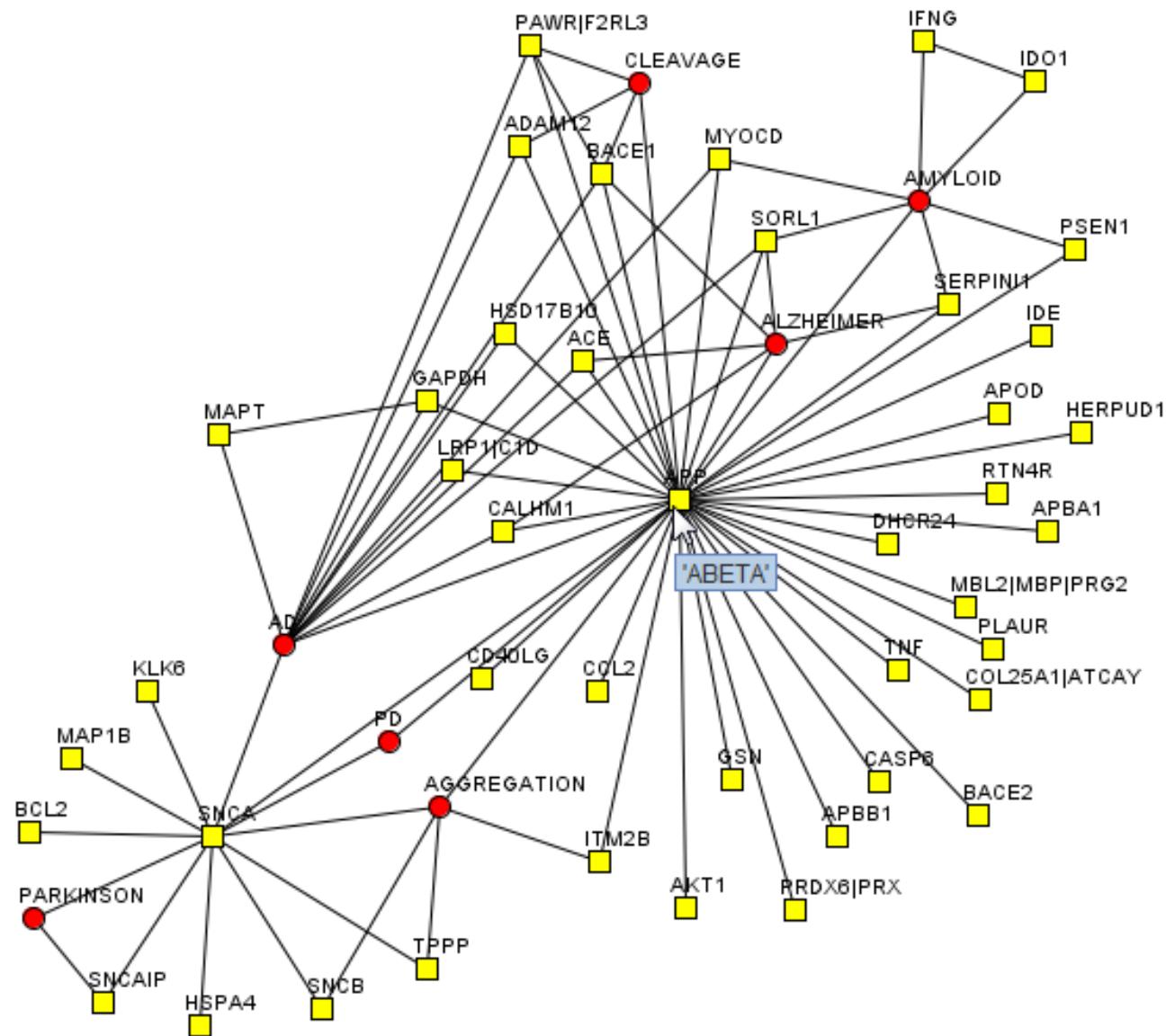
Direct binding studies revealed a high affinity interaction (IC₅₀ approximately 20 nm) between MAP-1B and alpha-synuclein.

[Biointeraction] + Term + Term + [Biointeraction]


Type 3


Immunoblotting confirmed the presence of MAP-1B and alpha-synuclein in purified Lewy bodies.

Term + Term

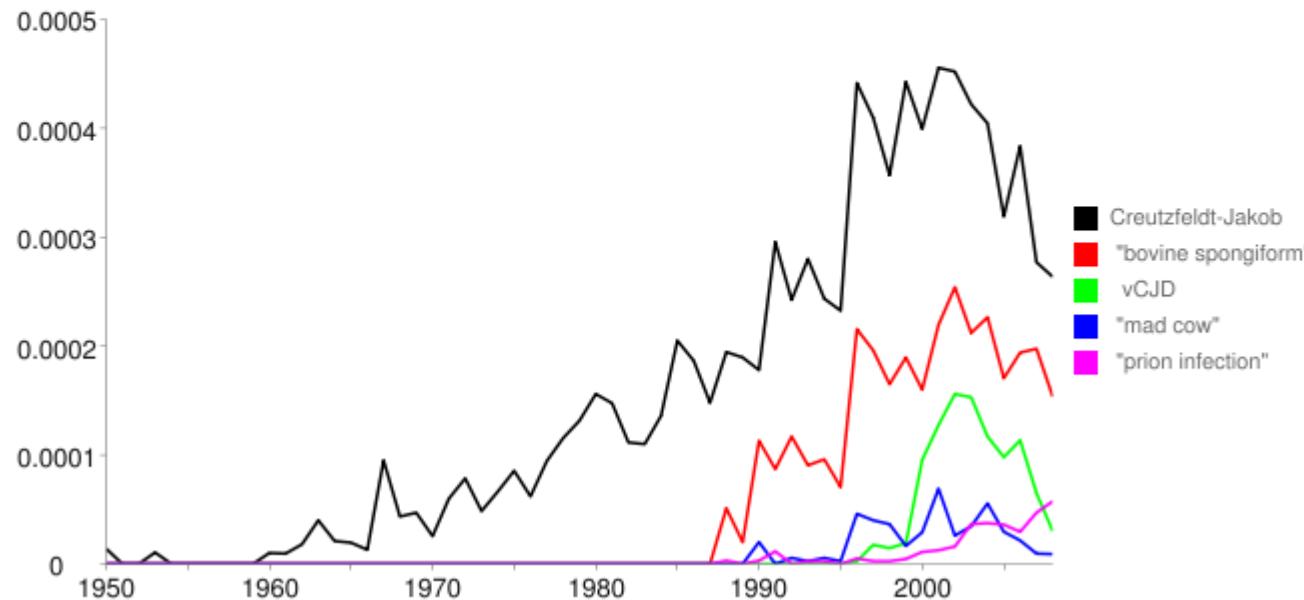

Type 4

co-occurrence in abstract

Sentence 4: Functionally, purified recombinant human p25 α strongly stimulates the AGGREGATION of α -synuclein in vitro as demonstrated by thioflavin-T fluorescence and quantitative electron microscopy.

MLTrends

Graph historical term usage in MEDLINE


<http://www.ogic.ca/mltrends/>

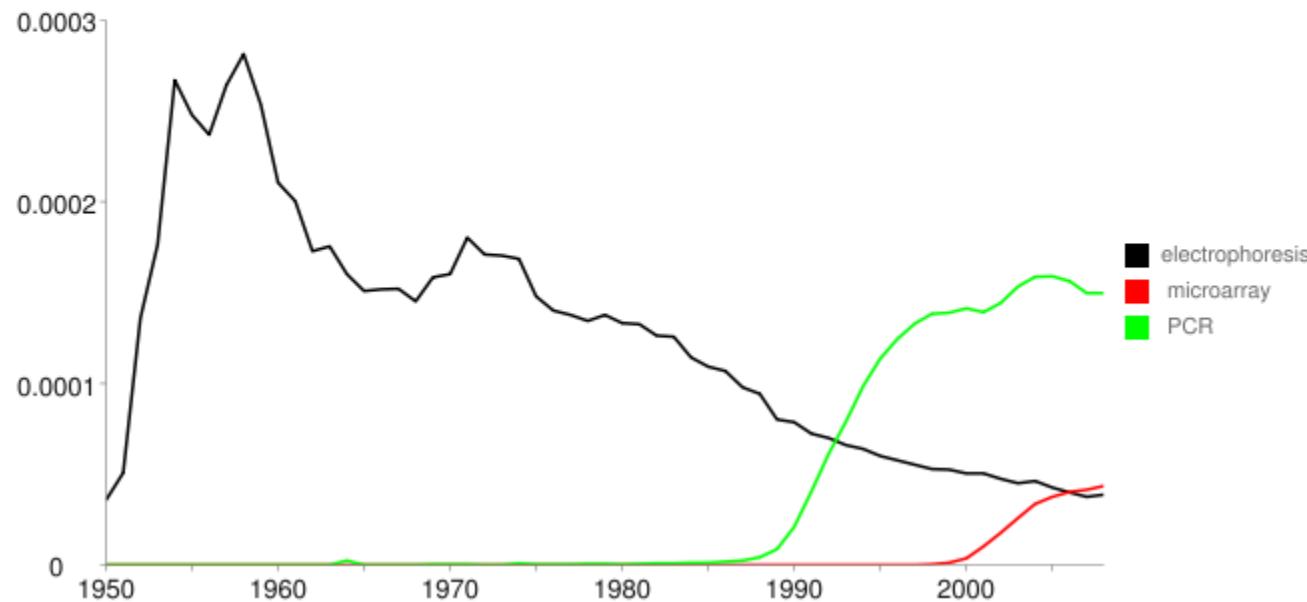
Gareth Palidwor
(OHRI-Ottawa)

MLTrends

search in: normalization: scale:

MLTrends

Graph historical term usage in MEDLINE


<http://www.ogic.ca/mltrends/>

Gareth Palidwor
(OHRI-Ottawa)

MLTrends

search in: normalization: scale:

MLTrends

Graph historical term usage in MEDLINE


<http://www.ogic.ca/mltrends/>

Gareth Palidwor
(OHRI-Ottawa)

MLTrends

search in: normalization: scale:
 [?](#)

peer2ref

Find referees

<http://www.ogic.ca/projects/peer2ref/>

Carolina Perez-Iratxeta
(OHRI-Ottawa)

peer2ref

Get suggested referees for your paper

Paste title + abstract from your manuscript [help example](#)

DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect

about
supplement
contact us

Reset

run with advanced options

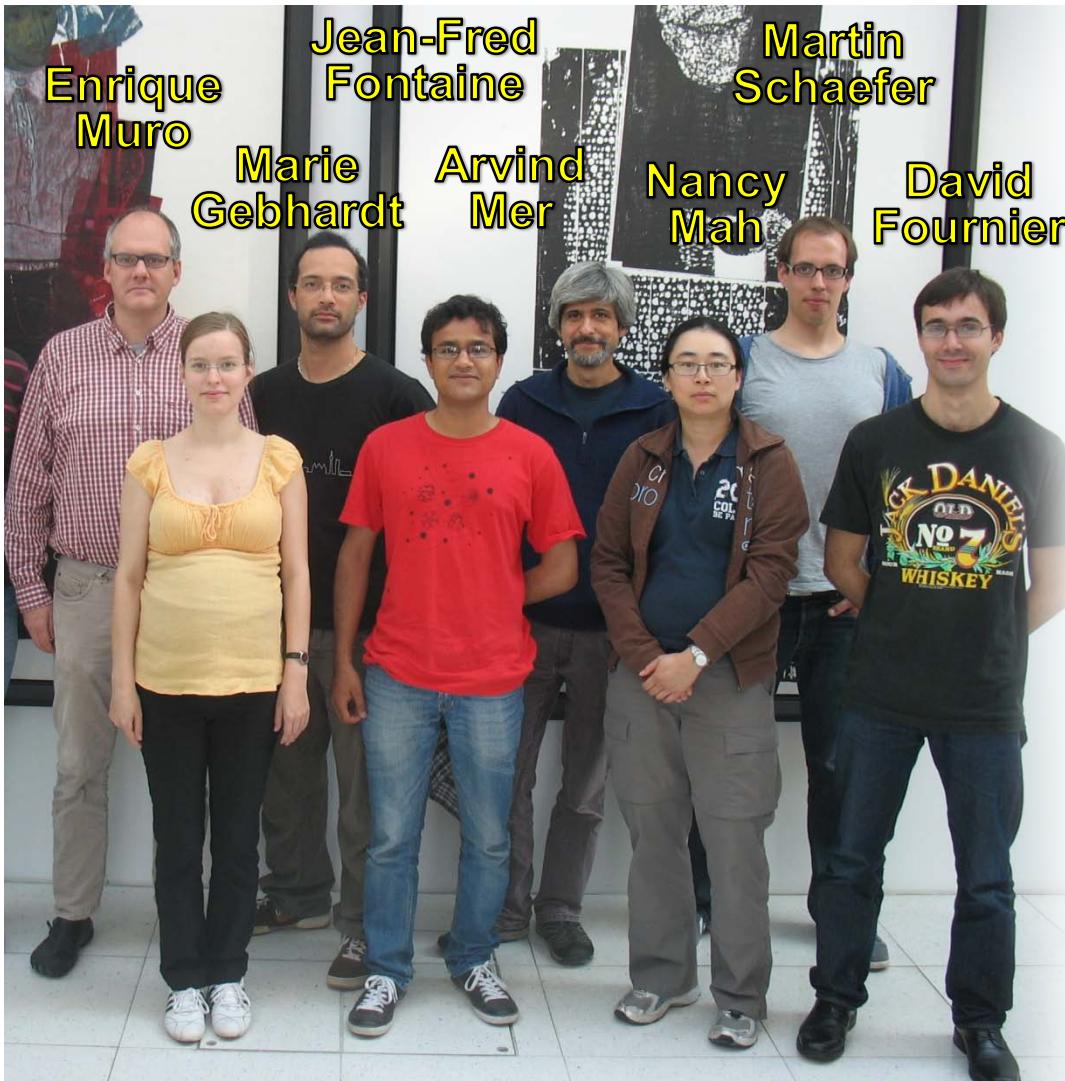
Andrade-Navarro et al (2012) *BioData Mining*

peer2ref

Find referees

<http://www.oqic.ca/peer2ref/>

NCBI Resources How To


PubMed Advanced

Display Settings: Summary, Sorted by Recently Added [Send to:](#)

Results: 5

- [IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells.](#)
1. Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y, Jacobsen SE.
J Immunol. 2005 Jan 15;174(2):752-7.
PMID: 15634895 [PubMed - indexed for MEDLINE] [Free Article](#)
[Related citations](#)
- [Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors.](#)
2. Månsson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S, Al-Hashmi S, Liuba K, Thorén L, Adolfsson J, Buza-Vidas N, Qian H, Soneji S, Enver T, Sigvardsson M, Jacobsen SE.
Immunity. 2007 Apr;26(4):407-19. Epub 2007 Apr 12.
PMID: 17433729 [PubMed - indexed for MEDLINE]
[Related citations](#)
- [Identification of Lin\(-\)Sca1\(+\)kit\(+\)CD34\(+\)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients.](#)
3. Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, Jacobsen SE.
Blood. 2005 Apr 1;105(7):2717-23. Epub 2004 Nov 30.
PMID: 15572596 [PubMed - indexed for MEDLINE] [Free Article](#)
[Related citations](#)

Computational Biology and Data Mining group

 HELMHOLTZ
ASSOCIATION
Alliance on Systems Biology

 Bundesministerium
für Bildung
und Forschung

NGFN
Nationales
Genomforschungsnetz

Deutsche
Forschungsgemeinschaft
DFG

<http://cbdm.mdc-berlin.de/>

MDC MAX-DELBRÜCK-CENTRUM
FÜR MOLEKULARE MEDIZIN
BERLIN-BUCH
IN DER HELMHOLTZ-GEMEINSCHAFT e.V.