Big data science for Earth observation:
large scale visual analytics and knowledge discovery

Mihai Datcu
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Motivation
Big Earth Observation Data
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Multispectral sensors: Sentinel 2
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SAR vs. optical images




The EO context

Earth Observation data is always used jointly with information extracted from
other sources such as GIS, in-situ observations, or maps.

The goal is the exploration of these data and the timely delivery of focused
information and knowledge in a simple understandable format.

The data volumes, their heterogeneity, unstructured nature and their complexity
have become a major Big EO Data challenge for all applications.

(a) SAR (b) Multispectral (c) Map - OpenStreetMap (d) LUCAS
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EO data particularities

« EO images: multisensory, eg. MS, SAR, altimeter, etc.

» These are multidimensional signals, acquired by sensors or instruments

» Sensor data carry physical meaning, radiation level, wavelength, etc.

« They are measuring land, ocean, or atmospheric parameters

* The VHR EO images observe detailed spatial structures and objects

» Satellite Image Time Series observe evolution processes over long period of time.

« An important particularity of EO images should be considered, is their
‘instrument” nature, i.e. they are sensing physical parameters, and they are
often sensing outside of the visual spectrum.
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Big EO Data Analytics

» The today techniques, methods, and tools, for automated data analysis are insufficient for
the analysis and information extraction from EO data sources.

* A new goal has become the gathering of the user’s interest, together with the transformation
of the data into reduced information and knowledge items, and adaptation to direct and easy
understanding.

» The capability of retrieving information interactively and the use of data-driven paradigms
are now more than ever necessary due to the huge data volumes being involved.




Examples
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Multisesnor search engine




Query Results
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Cascaded active learning

e Two main components: Feature extraction and Learning
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Semantic annotation

The location of the 300 TerraSAR-X scenes and the
distribution of the scenes
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From CLC to our semantic taxonomy

Legend - categories defined for Venice using CORINE Land Cover nomenclature:

|| Marine waters — coastal lagoons
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- Forest
l:l Heterogeneous agricultural areas
:] Open spaces with little or no vegetation

- Industrial, commercial and transport units

- Open spaces with little or no vegetation
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s - G S S S ¢ o v

* Using: CLC — 10 categories;

our methodology — 17 categories
* In the case of CLC some categories are
mixed together (e.g., the bridges
are included in marine \

Venice taxonomies (using TerraSAR-X data)

waters — coastal lagoons) o Waterand
. A Water an ater an 2 o 5
Bridge Port Afrport boats Bouy Water e Agriculture Vegetation Cemetery
Railway Water and Breaking River Vegetation
tracks Liban urban waves deposit Beach area and buildings
# yw r;g o
0l
DLR »




Semantic catalogues

-Bangkok (Thailand);
-Shenyang (China);
-Nazca Lines (Peru);
-Havana (Cuba);
-Venice (ltaly);
-Vasteras (Sweden);
-Oran (Algeria);
-Bogota (Columbia).
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Semantic annotation for Venice
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The number of categories retrieved when the scenes are
grouped geographically or architectural
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SCENE CATEGORIES & INFORMATION CONTENT
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Knowledge Discovery application example

The damages in the agriculture can be clearly seen by comparing the classification in pre disaster image
(left figure) with the post disaster image (right figure).
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Data Analytics: Tsunami
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Leading Edge: Big Data Analytics




Immersive Visual Information Mining for EO image archives

Navigation inside the EO image collections using the CAVE automatic virtual environment
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Immersive Visual Information Mining for EO image archives

Remote
Tracking System Controller
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EOLIB - Earth Observation Image Librarian

* Big Data Mining in the TerraSAR-X Ground Segment System
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